Robust hyper-heuristic algorithms for the offline oriented/non-oriented 2D bin packing problems

نویسندگان

  • Muhammed Beyaz
  • Tansel Dökeroglu
  • Ahmet Cosar
چکیده

The offline 2D bin packing problem (2DBPP) is an NP-hard combinatorial optimization problem in which objects with various width and length sizes are packed into minimized number of 2D bins. Various versions of this well-known industrial engineering problem can be faced frequently. Several heuristics have been proposed for the solution of 2DBPP but it has not been possible to find the exact solutions for large problem instances. Next fit, first fit, best fit, unified tabu search, genetic and memetic algorithms are some of the state-of-the-art methods successfully applied to this important problem. In this study, we propose a set of novel hyper-heuristic algorithms that select/combine the state-of-the-art heuristics and local search techniques for minimizing the number of 2D bins. The proposed algorithms introduce new crossover and mutation operators for the selection of the heuristics. Through the results of exhaustive experiments on a set of offline 2DBPP benchmark problem instances, we conclude that the proposed algorithms are robust with their ability to obtain high percentage of the optimal solutions. © 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of evolutionary algorithm selection hyper-heuristics for the one-dimensional bin-packing problem

Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of comb...

متن کامل

Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items

In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...

متن کامل

On Solving the Oriented Two-Dimensional Bin Packing Problem under Free Guillotine Cutting: Exploiting the Power of Probabilistic Solution Construction

Two-dimensional bin packing problems are highly relevant combinatorial optimization problems. They find a large number of applications, for example, in the context of transportation or warehousing, and for the cutting of different materials such as glass, wood or metal. In this work we deal with the oriented two-dimensional bin packing problem under free guillotine cutting. In this specific pro...

متن کامل

A genetic programming hyper-heuristic approach to automated packing

This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rat...

متن کامل

Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems

Evolutionary algorithms (EAs) often appear to be a ‘black box’, neither offering worst-case bounds nor any guarantee of optimality when used to solve individual problems. They can also take much longer than non-evolutionary methods. We try to address these concerns by using an EA, in particular the learning classi£er system XCS, to learn a solution process rather than to solve individual proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015